Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Miao Du* and Xiao-Jun Zhao

College of Chemistry and Life Science, Tianjin Normal University, Tianjin 300074, People's Republic of China

Correspondence e-mail: dumiao@public.tpt.tj.cn

Key indicators

Single-crystal X-ray study T = 293 KMean $\sigma(C-C) = 0.002 \text{ Å}$ R factor = 0.045 wR factor = 0.135 Data-to-parameter ratio = 15.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

© 2003 International Union of Crystallography Printed in Great Britain – all rights reserved

3-Carboxypyridine N-oxide: supramolecular aggregation through $O = H \cdots O$ and $C = H \cdots O$ interactions

In the crystal structure of the title molecule, $C_6H_5NO_3$, weak $C-H\cdots O$ interactions result in dimeric units which are extended by strong $O-H\cdots O$ hydrogen bonds to form a two-dimensional supramolecular (4,4)-layered architecture.

Received 23 September 2003 Accepted 1 October 2003 Online 7 October 2003

Comment

Nowadays it is well known that the marked directionality of both strong $O-H\cdots O$ and weak $C-H\cdots O$ hydrogen bonds makes them useful in crystal design for the preparation of molecular materials with controlled physical properties (Desiraju, 1995; Desiraju & Steiner, 1999). Very strong intramolecular $O-H\cdots O$ hydrogen bonds and weak C- $H\cdots O$ interactions were observed (Steiner *et al.*, 2000) in the crystal structure of 2-carboxypyridine *N*-oxide (picolinic acid *N*-oxide). It can be anticipated that, when both *N*-oxide and carboxylic groups are present in a molecule, a variety of hydrogen-bonding patterns are possible. Thus, the main interest in the solid-state structure of such compounds is the determination of the hydrogen-bonding motifs. We report here the molecular and supramolecular structure of the title compound, 3-carboxypyridine *N*-oxide, (I).

The molecular structure of (I) is shown in Fig. 1, and important bond lengths and angles are given in Table 1. In the carboxy group, the C=O and C-O bonds are clearly distinct [C=O = 1.211 (2) Å and C-O = 1.308 (2) Å]. Atoms O1 and O2 are displaced from the least-squares plane of the pyridine ring by 0.148 (2) and -0.123 (2) Å, respectively [the maximum deviation of non-H atoms from the plane is 0.006 (2) Å, while the average deviation is 0.004 (2) Å]. The N-O distance is 1.333 (2) Å, which is slightly, but significantly, elongated compared to the average value of 1.304 Å in pyridine N-oxides and consistent with those of other carboxypyridine N-oxide derivatives (Steiner *et al.*, 2000).

Analysis of the crystal packing of (I) shows that there is one classical $O1-H1\cdots O3^i$ hydrogen bond and a weak C4– $H4A\cdots O3^{ii}$ interaction (geometrical parameters and symmetry codes are listed in Table 2). A pair of head-to-tail intermolecular C4– $H4A\cdots O3^{ii}$ interactions links adjacent molecules to form a dimer. The resulting motif, in the formalism of the graph-set analysis of hydrogen-bond patterns

Figure 1

View of the molecule of (I), with displacement ellipsoids drawn at the 30% probability level.

Figure 2

Part of the crystal structure of (I), showing the two-dimensional hydrogen-bonding layer containing $R_2^{-2}(8)$ and $R_6^{-4}(32)$ motifs.

(Etter, 1990), is characterized as $N_2 = R_2^2(8)$. Each dimeric unit acts as a 4-connected node, linking four adjacent dimers through four strong O1-H1···O3ⁱ hydrogen bonds to form a two-dimensional (4,4)-layered structure, with the repeating unit $N_6 = R_6^4(32)$ hydrogen-bonding pattern. A packing diagram of (I) in the unit cell, showing these hydrogenbonding interactions is presented in Fig. 3. There is no evidence of any aromatic π - π stacking or C-H··· π interactions. Examination of the structure with *PLATON* (Spek, 2003) showed that there were no solvent-accessible voids in the crystal lattice of (I).

Experimental

Well shaped colorless single crystals of the title compound, (I), suitable for X-ray diffraction were obtained by recrystallizing the commercial product (Aldrich) from a hot CH_3OH solution.

Crystal data

C ₆ H ₅ NO ₃	$D_x = 1.578 \text{ Mg m}^{-3}$
$M_r = 139.11$	Mo $K\alpha$ radiation
Monoclinic, $P2_1/c$	Cell parameters from 3276
a = 3.7879(7) Å	reflections
b = 10.624 (2) Å	$\theta = 2.4-28.0^{\circ}$
c = 14.674 (3) Å	$\mu = 0.13 \text{ mm}^{-1}$
$\beta = 97.416 \ (3)^{\circ}$	T = 293 (2) K
$V = 585.6 (2) \text{ Å}^3$	Prism, colorless
Z = 4	$0.34 \times 0.26 \times 0.17 \text{ mm}$

Figure 3

A three-dimensional packing diagram of (I), showing the hydrogenbonding interactions as dashed lines.

Data collection

Bruker SMART 1000	1397 independent reflections
diffractometer	1222 reflections with $I > 2\sigma(I)$
w scans	$R_{\rm int} = 0.053$
Absorption correction: multi-scan	$\theta_{\rm max} = 28.0^{\circ}$
(SADABS; Sheldrick, 1997)	$h = -5 \rightarrow 4$
$T_{\min} = 0.896, \ T_{\max} = 0.980$	$k = -12 \rightarrow 14$
3805 measured reflections	$l = -16 \rightarrow 19$

Refinement

$w = 1/[\sigma^2(F_o^2) + (0.0765P)^2]$
+ 0.147P]
where $P = (F_o^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} < 0.001$
$\Delta \rho_{\rm max} = 0.38 \text{ e} \text{ Å}^{-3}$
$\Delta \rho_{\rm min} = -0.16 \mathrm{e} \mathrm{\AA}^{-3}$

Table 1

Selected geometric parameters (Å, °).

O3-N1	1.3332 (15)	O1-C1	1.3078 (17)
N1-C3	1.3511 (17)	O2-C1	1.2114 (18)
N1-C4	1.3516 (18)		
O3-N1-C3	119.90 (11)	C3-N1-C4	121.52 (12)
O3-N1-C4	118.56 (11)	O2-C1-O1	125.13 (13)

Table 2

Hydrogen-bonding geometry (Å, $^{\circ}$).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$D1-H1\cdots O3^{i}$ $C4-H4A\cdots O3^{ii}$	0.82 0.93	1.71 2.41	2.525 (2) 3.311 (2)	169 164
Summatry and as (i) 1	x u 11		1 -	

Symmetry codes: (i) 1 - x, $y - \frac{1}{2}, \frac{1}{2} - z$; (ii) -x, 1 - y, 1 - z.

Although all H atoms were visible in difference maps, they were placed in geometrically calculated positions (C–H = 0.93 Å for aromatic H atoms and O–H = 0.82 Å), and included in the final

refinement in the riding-model approximation, with displacement parameters $U_{iso}(H) = 1.2U_{eq}$ of the carrier atom.

Data collection: *SMART* (Bruker, 1998); cell refinement: *SMART*; data reduction: *SAINT* (Bruker, 1998); program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *XP* in *SHELXTL* (Bruker, 1998); software used to prepare material for publication: *SHELXL*97.

This work was financially supported by the Starting Funding of Tianjin Normal University and the Natural Science Foundation of Tianjin Education Commission (to MD).

References

- Bruker (1998). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
- Desiraju, G. R. (1995). Angew. Chem. Int. Ed. Engl. 35, 2311-2327.
- Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology. Oxford University Press.
- Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.
- Sheldrick, G. M. (1997). SADABS, *SHELXS*97 and *SHELXL*97. University of Göttingen, Germany.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Steiner, T., Schreurs, A. M. M., Lutz, M. & Kroon, J. (2000). Acta Cryst. C56, 577–579.